Surface Soil Drying Observed by AMSR-E in the Mongolian Plateau

Ichiro KAIHOTSU (Hiroshima U), Toshio KOIKE (U Tokyo), Tetsu OHTA (U Tokyo), Katsunori TAMAGAWA (U Tokyo), Gombo DAVAA (IMH), Dambaravjaa OYUNBAATAR (IMH) and Tsutomu YAMANAKA (U Tsukuba)

1. Background and purposes
2. Research method
3. AMSR-E soil moisture estimation
4. Ground-based soil moisture analysis
5. Conclusions

Firenze
March 11, 2008
Background

◊ Important role of soil moisture behaviors of the Mongolian plateau in water cycle and vegetation change in East Asia.

◊ Long term monitoring of soil moisture by satellites (AQUA, ALOS · · ·) and ground-based stations for CEOP and GEOSS.
Purposes

○ Grasping the real condition of soil moisture behaviors in the Mongolian plateau

○ Long-term monitoring of soil moisture in the Mongolian plateau by AMSR-E and ground-based stations
Mongolian plateau

Vegetation conditions in Mongolia
Soil moisture monitoring by AMSR-E (AQUA)

AMSР-E (Advanced Microwave Scanning Radiometer-EOS) of AQUA (EOS Aqua Launch: May 4, 2002): AMSR-E in PM Orbit

<table>
<thead>
<tr>
<th>Frequency (GHz)</th>
<th>6.9</th>
<th>10.6</th>
<th>18.7</th>
<th>23.8</th>
<th>36.5</th>
<th>89.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground solution (km)</td>
<td>43</td>
<td>29</td>
<td>16</td>
<td>18</td>
<td>8.2</td>
<td>3.5</td>
</tr>
<tr>
<td>Bandwidth (MHz)</td>
<td>350</td>
<td>100</td>
<td>200</td>
<td>400</td>
<td>1000</td>
<td>3000</td>
</tr>
<tr>
<td>Polarization</td>
<td>Horizontal and vertical</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation swath</td>
<td>1,450 km</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absolute accuracy</td>
<td>1K(1σ) target</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Radiative Transfer Equation for Vegetated Area

\[T_b = e_{soil} \cdot T_s \cdot e^{-\tau_c} + \left(1 - \omega_c \right) T_c \cdot \left(1 - e^{-\tau_c} \right) \]

- \(T_b \): brightness temp.
- \(T_c \): canopy physical temp.
- \(\omega_c \): single scatt. albedo
- \(\tau_c \): optical depth
- \(T_s \): soil physical temp.
- \(e_{soil} \): soil emissivity

Radiation from land surface attenuated in vegetation layer
Upward radiation emission from vegetation layer
ISW - PI algorithm (by Prof. Koike)

\[
ISW = \frac{T_{b_high} - T_{b_low}}{\frac{1}{2}(T_{b_high} + T_{b_low})}
\]

Index of Soil Wetness

:High soil moisture → High ISW

low: 6GHz H p.
high: 37GHz H p.

\[
PI = \frac{T_{b_v} - T_{b_h}}{\frac{1}{2}(T_{b_v} + T_{b_h})}
\]

Polarization Index

:Vegetation → Low PI

low: 6GHz H p.
high: 37GHz H p.
18GHz h: H p.
v: V p.

Forward Model

\[
\begin{align*}
&M_v \\
\rightarrow & e_{\text{soil}} \\
\rightarrow & \Gamma \\
\rightarrow & e_{\text{soil}} \\
\rightarrow & \text{emissivity} \\
\rightarrow & \text{calculated brightness temp.} \\
\rightarrow & T_b
\end{align*}
\]

\[
\begin{align*}
&\lambda, W_c \\
\rightarrow & \tau_c \\
\rightarrow & T
\end{align*}
\]

Reverse Convert

(make Lookup Table)

\[
\begin{align*}
&M_v \\
\rightarrow & ISW, PI
\end{align*}
\]

Reversion Analysis

\[
\begin{align*}
&T_b_{\text{obs}} \\
\rightarrow & PI_{\text{obs}}, ISW_{\text{obs}} \\
\rightarrow & M_v, W_c
\end{align*}
\]

Forward Model

- **Volumetric Soil Moisture**
- **Dielectric Constant**
- **Fresnel Power Reflectivity**
- **Physical Temperature**
- **Optical Depth**
- **Emissivity**
- **Calculated Brightness Temperature**

Index of Soil Wetness

- High soil moisture → High ISW

low: 6GHz H p.
high: 37GHz H p.

Polarization Index

- Vegetation → Low PI

low: 6GHz H p.
high: 37GHz H p.
18GHz h: H p.
v: V p.
Validation results in 2003 (All: Ground-based area soil moisture at the 3cm depth, Descending: AMSR-E soil moisture < Average absolute error: AVE = 2.1377 > SM: soil moisture)
Ten day change of the AMSR-E soil moisture estimation from June to Sep. in 2006 in the Mongolian plateau

Applicable conditions: 60% ≥ soil moisture, 2Kg/m² ≥ plant water
Ten day change of the AMSR area-averaged soil moisture estimation (SMarea) in the main part of the Mongolian plateau in each year.
Yearly change of the AMSR-E area-averaged soil moisture estimation (SMarea) in the main and eastern parts of the Mongolian plateau.
Working stations in the MAVEX (Mongol AMSR/AMSR-E/ALOS Validation Experiment) study area as of Dec., 2007:

- AWS (Automatic Weather Station),
- ASSH (Automatic Station for Soil Hydrology),
- SA: Study area of AMPEX/MAVEX, UB: Ulaanbaatar
A time series of the daily area-averaged soil moisture \(VWC_{\text{area}} \) at the 3 and 10 cm depths in the study area from 2001 to 2006.

\[
VWC_{\text{area}} = \frac{\sum (SM_{\text{ASH}} - n + \cdots + SM_{\text{AWS}} - m)}{N}
\]

\(VWC_{\text{area}} \): daily mean areal soil moisture, \(SM \): soil moisture,
\(n \): ASSH number, \(m \): AWS site, \(N \): number of stations

3 cm depth

10 cm depth

Slightly decreasing

A time series of the daily area-averaged soil moisture \(VWC_{\text{area}} \) at the 3 and 10 cm depths in the study area from 2001 to 2006.
A time series of daily mean temperatures of soil surface: T_s and air: T_a, daily mean net radiation: R_n and precipitation: P at MGS and DRS from Sep. 2000 to June 2006.
Yearly change of the area-averaged soil moisture (SMarea) at the 0-10 cm depth of NAMHEM in the main and eastern parts of the Mongolian plateau.
Conclusions

∅ Slight decline of the AMSR-E soil moisture estimation for the last five years in the Mongolian plateau

∅ Overestimation of the ASMR-E soil moisture observation

∅ Continuing a long term monitoring of soil moisture by AMSR-E and ground-based stations

∅ Challenging to make a synergy observation of soil moisture by AMSR-E, ALOS and SMOS